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We present molecular dynamics simulations of the slow dynamics of a mixture of large and small soft
spheres with a large size disparity. The dynamics are investigated in a broad range of temperature and mixture
composition. As a consequence of the large size disparity, large and small particles exhibit very different
relaxation times. As previously reported for simple models of short-ranged attractive colloids and polymer
blends, several anomalous dynamic features are observed: �i� sublinear behavior for mean-squared displace-
ments, �ii� concave-to-convex crossover for density-density correlators, by varying the temperature or wave
vector, and �iii� logarithmic decay for specific wave vectors of density-density correlators. These anomalous
features are observed over time intervals extending up to four decades and strongly resemble predictions of the
mode coupling theory �MCT� for state points close to higher-order MCT transitions, which originate from the
competition between different mechanisms for dynamic arrest. For the large particles we suggest competition
between soft-sphere repulsion and depletion effects induced by neighboring small particles. For the small
particles we suggest competition between bulklike dynamics and confinement, respectively induced by neigh-
boring small particles and by the slow matrix of large particles.
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I. INTRODUCTION

The rheological properties of soft-matter-based systems
can be manipulated by a proper addition of components of
different mobilities. Some examples are colloid-polymer
mixtures and polymer blends. These types of binary mixtures
exhibit unusual relaxation features which challenge the stan-
dard pictures of structural dynamic arrest in glass-forming
liquids and colloidal systems. Differently from the usual
two-step increase and decay for, respectively, mean-squared
displacements and dynamic correlators �1–5�, the latter do
not exhibit a defined plateau at intermediate times between
the microscopic and diffusive regimes �6–8�. This result sug-
gests a softer character for the collective caging
mechanism—i.e., the temporary trapping of each particle by
its neighbors. Dynamic correlators show a highly stretched
decay, and for selected values of the control parameters the
decay is logarithmic in time. By varying wave vectors or
control parameters the decay shows a striking concave-to-
convex crossover �6,8�, leading to violation of standard scal-
ing laws for complex dynamics as the time-temperature su-
perposition principle.

These anomalous relaxation features have been recently
derived within the mode coupling theory �MCT� for simple
models of hard-sphere colloids with short-ranged attractions
�9�. The MCT is a first-principles theory of the glass transi-
tion which makes predictions for averaged dynamic quanti-
ties as mean-squared displacements, diffusivities, or incoher-
ent and coherent dynamic correlators �1,2,10�. The only
input in MCT equations is the structural information con-
tained in the total and partial static structure factors, which
enter the memory function accounting for the fluctuating

forces. MCT determines dynamic quantities from the knowl-
edge of static correlations. Indeed MCT relates small varia-
tions in static correlations with large variations in dynamics.

The solution of the MCT equations for the mentioned
models of short-ranged attractive colloids �9,11–14� has de-
termined the existence of so-called higher-order transitions,
showing properties rather different from the standard fold
MCT transition associated with the liquid-glass transition.
The mentioned anomalous relaxation features have been re-
lated to the presence of nearby higher-order transitions. MCT
predictions for these type of models have been confirmed by
molecular dynamics simulations �6,7,15� and experiments
�16–18�.

The models of hard-sphere colloids with short-ranged at-
tractions investigated in Refs. �6,7,9� are used as one-
component effective models for the colloidal particles in
colloid-polymer mixtures. The addition of small polymers
�or other small particles� to dense solutions of large colloidal
particles yields an effective attraction between the colloidal
particles in order to maximize entropy �19�. This effect is
known as the depletion mechanism. As a consequence, in a
certain range of density, temperature, and mixture composi-
tion, competition occurs between two different mechanisms
for dynamic arrest of the colloidal particles: hard-sphere-
repulsion characteristic of colloidal systems and formation of
reversible bonds, induced by the depletion mechanism
�20,21�. In the effective one-component system the higher-
order MCT scenario arises as a consequence of these two
competing mechanisms of very different localization lengths
�9,13�. When heating up or cooling down the system, dy-
namic arrest is exclusively driven by, respectively, hard-
sphere repulsion and reversible bond formation, and relax-
ation features of standard liquid-glass transitions are
recovered �6,7�.

Very recently, we have carried out simulations on a simple
bead-spring model for polymer blends �8�. The introduction*Corresponding author. Electronic address: wabmosea@sq.ehu.es
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of a significant monomer size disparity yields very different
relaxation times for both components in the blend, the com-
ponent of small monomers being the fast one. The fast com-
ponent exhibits anomalous relaxation features, very different
from standard results observed for homopolymers and
strongly resembling predictions of the higher-order MCT
scenario for short-ranged attractive colloids. Fully atomistic
simulations on a real polymer blend are consistent with the
anomalous features reported for the bead-spring model �22�.
We have pointed out the hypothesis of an underlying higher-
order MCT scenario for the dynamics of the fast component,
which might arise from the competition between bulklike
caging and confinement as different mechanisms for dy-
namic arrest for the fast component. Bulklike caging is in-
duced by the particles of the fast component, and confine-
ment is induced by the matrix formed by the chains of the
slow component. Due to chain connectivity, the former
mechanism is present even for high dilution of the fast com-
ponent, extending the anomalous relaxation scenario over a
broad range of blend compositions �8�.

At present no MCT theoretical calculations are available
for models of polymer blends similar to that investigated in
Ref. �8�. A related system for which theoretical MCT works
are available is a binary mixture of large and small hard
spheres �23�. However, the size disparity used in such works,
and also in computational investigations in the MCT frame-
work �24,25�, is not sufficient to provide a large separation in
the time scales for large and small particles—i.e., to induce
confinement effects for the latter. It is not also sufficient to
induce significant depletion effects for the large particles. As
a consequence, the anomalous relaxation features reported
for polymer blends and short-ranged attractive colloids are
not predicted for moderate size disparity and indeed are not
observed in the corresponding simulations. Instead, a de-
scription in terms of standard MCT predictions is possible
for moderate size disparities �23–25�.

Very recently, MCT theoretical calculations have been re-
ported by Krakoviack �26,27� for a binary mixture of mobile
and static hard spheres, a system where confinement effects
are present �28,29�. For this system, the extreme cases of the
Lorentz gas �a single mobile particle in a disordered medium
of static obstacles� and the liquid of hard spheres are ob-
tained for high dilution of, respectively, mobile and static
particles. At a given composition of the mixture a higher-
order MCT transition has been derived. This result supports
the hypothesis of a similar MCT scenario in polymer blends
originating from competition between bulklike caging and
confinement.

The observed analogies between the dynamics of colloi-
dal particles in colloid-polymer mixtures and of the fast com-
ponent in polymer blends suggest that the higher-order MCT
scenario might be a general feature of systems showing slow
dynamics with several competing mechanisms for dynamic
arrest. In this article we provide evidence in favor of this
hypothesis by carrying out molecular dynamics simulations
on a mixture of large and small soft spheres of very different
sizes. The results presented here for large size disparity �ratio
�=2.5� complement previous investigations of slow dynam-
ics in binary mixtures with small disparity. We observe
anomalous relaxation features similar to those recently re-

ported for models of short-ranged attractive colloids and
polymer blends. We investigate a wide range of temperatures
and mixture compositions. By tuning the composition, these
features are displayed by both the large and small particles.

For the case of the large particles, we assign such anoma-
lous features to competition between soft-sphere repulsion
and the depletion mechanism induced by the small particles.
For the small particles, we suggest competition between
bulklike dynamics induced by the neighboring small par-
ticles and confinement induced by the matrix of slow large
particles. Similarly to the fast component in polymer blends
�8� and despite the absence of chain connectivity, small par-
ticles exhibit apparent anomalous relaxation over a broad
range of compositions extending up to high dilution. In the
latter case, these effects are clearly manifested by a signifi-
cant subset of small particles forming small clusters.

The article is organized as follows. In Sec. II we introduce
the investigated model and give computational details. In
Sec. III we present simulation results for static structure fac-
tors. We also present dynamic quantities displaying unusual
relaxation features. In Sec. IV the framework of the MCT is
used in an operational way to describe simulation results. In
Sec. V we discuss the possible origin of the observed anoma-
lous dynamic features. Conclusions are given in Sec. VI.

II. MODEL AND SIMULATION DETAILS

We have simulated a mixture of large �labeled as A and B�
and small �C and D� particles of equal mass m=1, interacting
through a soft-sphere potential plus a quadratic term:

V�� = 4������

r
�12

− C0 + C2� r

���
�2� , �1�

where �=1 and �, � � 	A ,B ,C ,D
. The interaction is zero
beyond a cutoff distance c���, with c=1.15. The addition of
the quadratic term to the soft-sphere interaction, with the
values C0=7c−12 and C2=6c−14, guarantees continuity of the
potential and forces at the cutoff distance. The diameters of
the soft-sphere potential for the different types of interaction
are �DD=1, �CC=1.1�DD, �BB=2.5�DD, �AA=1.1�BB, and
���= ����+���� /2 for the case ���.

The potential �1� is purely repulsive. It does not show
local minima within the interaction range r�c���. Hence,
slow dynamics in the present model arises as a consequence
of steric effects. MCT theoretical works are usually carried
out on systems of hard objects, while simulations in similar
systems with continuous interactions are usually preferred
for computational simplicity. In the present system, the tail
of the interaction potential is progressively probed by de-
creasing temperature, which plays the role of increasing
packing in a system of hard spheres. Hence, the simulations
presented here should be useful for a qualitative test of the
success or failure of future MCT theoretical works on mix-
tures of hard spheres with large size disparity.

The composition of the mixture is defined as the fraction
of small particles: xsmall= �NC+ND� / �NA+NB+NC+ND�, with
N� denoting the number of particles of the species �. As
shown below, the introduction of a large size disparity be-
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tween the sets 	A ,B
 and 	C ,D
 yields very different time
scales for both sets. We impose the constraints NA=NB and
NC=ND. These constraints, together with the small selected
ratios �CC /�DD=�AA /�BB=1.1, guarantee that only very
small dynamic differences are induced between particles
within a same set �	A ,B
 or 	C ,D
� and, at the same time,
avoid crystallization for the investigated compositions xsmall.
Crystallization would occur for very asymmetric mixtures if
only one type of large and small particles were introduced
�30�.

In the following, temperature T, distance, wave vector q,
and time t will be given, respectively, in units of � /kB, �DD,
�DD

−1 , and �DD�m /��1/2. The packing fraction � is defined as

� =
�

6L3 �NA�AA
3 + NB�BB

3 + NC�CC
3 + ND�DD

3 � , �2�

with L the side of the simulation box. Simulations have been
carried out at a constant packing fraction �=0.53. This value
is comparable to those used in simulations of slow relaxation
in simple liquids. For comparison, the original Lennard-
Jones binary mixture investigated by Kob and Andersen �3�
has �=0.59 with the definition of packing fraction given
above. We investigate the T dependence of the dynamics for
mixture compositions xsmall=0.1, 0.3, 0.6, and 0.8. The num-
bers of large and small particles for each composition are,
respectively, �NA+NB :NC+ND�= �5400:600�, �2100:900�,
�1000:1500�, and �800:3200�. The system is prepared by
placing the particles randomly in the simulation box, with a
constraint that avoids core overlapping. Periodic boundary
conditions are implemented. Equations of motion are inte-
grated by using the velocity Verlet scheme �31�, with a time
step ranging from 2	10−4 to 5	10−3, for, respectively, the
highest and lowest investigated temperature. A link-cell
method �31� is used for saving computational time in the
determination of particles within the cutoff distance of a
given one.

At each state point, the system is thermalized at the re-
quested temperature by periodic velocity rescaling. After
reaching equilibrium, energy and pressure show no drift.
Likewise, mean-squared displacements and dynamic correla-
tors show no aging—i.e., no time shift when being evaluated
for progressively longer time origins. Once the system is
equilibrated, a microcanonical run is performed for the pro-
duction of configurations, from which static structure factors,
mean-squared displacements, and dynamic correlators are
computed. For each state point, the latter quantities are av-
eraged over typically 20–40 independent samples.

III. RESULTS

A. Static structure factors

We compute normalized partial static structure factors
S���q�= �
��q ,0�
��−q ,0�� /
N�N�, with 
��q , t�
=� jexp�iq ·r�,j�t��, the sum extending over all the particles
of the species �� 	A ,B ,C ,D
. Figure 1 shows, at a fixed
temperature T=0.50 and different mixture compositions, re-
sults for A-A, D-D, and A-D pairs. Data for other large-large,
small-small, and large-small pairs display only small quanti-
tative differences.

For high concentration of the large particles, xsmall=0.1,
SAA�q� shows a sharp first peak at q=2.65�DD

−1 , correspond-
ing to a typical distance of 2.37�DD between neighboring A
particles. This distance is smaller than the soft-sphere diam-
eter �AA=2.75�DD. This feature is possible due to the inter-
penetrable character of soft spheres. By increasing the con-
centration of small particles, the matrix of large particles
progressively becomes more disordered. As a consequence,
the height of the first peak of SAA�q� decreases considerably.
The first minimum follows the opposite trend and becomes
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FIG. 1. �Color online� Partial static structure factors at T=0.50
and different mixture compositions, as computed from simulation
data. Wave vectors are given in units of �DD

−1 .
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less pronounced. The small shift of maxima and minima to
higher q values by increasing xsmall reflects a stronger pack-
ing of the large particles. For large concentration of small
particles, xsmall=0.8, SAA�q� shows a small peak at low q. We
assign this peak to the presence of inhomogeneities or
“voids” in the matrix of large particles, which are filled by
the small particles �see also Sec. V, Fig. 11�c��.

At high dilution of the small particles, xsmall=0.1, SDD�q�
shows a nearly structureless profile, close to the flat behavior
expected for a gas. Only a weak oscillation is observed at
low q. This feature reflects the existence of a small fraction
of clusters of neighboring small particles �see also Sec. V�.
Increasing the concentration of small particles yields a broad
peak at q�6.3�DD

−1 , corresponding to a typical distance of
about �DD between neighboring small particles. The peak
grows up and narrows by increasing xsmall, as a signature of
progressive ordering of the small particles. Still, one finds a
rather broad peak at the highest value of xsmall=0.8. Increas-
ing the concentration of small particles also produces a low-
q peak of increasing intensity in SDD�q�. Such a peak origi-
nates from the inhomogeneities in the structure formed by
the small particles �see also Sec. V, Figs. 11�b� and 11�c��.
We do not observe changes, at any of the investigated tem-
peratures, in the intensity of the low-q peak within the time
window of the simulation. Hence, phase separation is dis-
carded for the results here presented.

The static structure factor for cross correlations, SAD�q�,
exhibits a first peak at q�3.2�DD

−1 , corresponding to a typical
distance of about 2�DD between neighboring large and small
particles �for comparison the soft-sphere diameter for A-D
interactions is �AD=1.875�DD�. The intensity at large wave-
length �low q� becomes more negative by increasing the con-
centration of small particles. This effect might originate from
nonrandom mixing of large and small particles �see also Sec.
V, Figs. 11�b� and 11�c��. Only for high dilution of the small
particles is mixing approximately random and the limit
SAD�q→0�=0 is approached.

B. Diffusivities and mean-squared displacements

Figure 2 shows the T dependence of the diffusivity D for
all the species in the mixture at all the investigated compo-
sitions. For each species �� 	A ,B ,C ,D
 the diffusivity is
calculated from the long-time limit of ���r��t��2� /6t, with
���r��t��2� the corresponding mean-squared displacement at
time t. As shown in Fig. 2, the introduction of a significant
size disparity yields very different time scales for the sets of
large and small particles. Small differences are instead ob-
tained between the diffusivities of both species within a same
set. Only for the lowest temperature at concentration xsmall
=0.1 there are significant differences �about a factor of 4 in
diffusivity� between C and D particles. In the following,
simulation results will only be shown for the large A par-
ticles and the small D ones. The qualitive behavior of respec-
tively B and C particles is the same, displaying only small
quantitative differences with the formers.

Figure 3 shows the T dependence of the mean-squared
displacement of the A particles, ���rA�2�, for three different
compositions xsmall=0.1, 0.6, and 0.8. As usually observed in

the proximity of liquid-glass transitions �2–4�, a bending oc-
curs after the initial ballistic �
t2� regime. A plateau arises at
low temperatures. This effect corresponds to the well-known
caging regime—i.e., the temporary trapping of each particle
in the cage formed by the neighboring ones. At long times,
the diffusive regime �
t� is reached for values ���rA�2�
��AA

2 —i.e, when the A particles have moved, on average, a
distance of the order of their size.

By looking in more detail at the data for T=0.75 and T
=1.0, at xsmall�0.6 �Figs. 3�b� and 3�c��, an unusual approxi-
mate sublinear behavior 
t� is observed over two time de-
cades after the ballistic regime. The exponent ��1 de-
creases by decreasing temperature. For xsmall=0.8 we also
note, at all temperatures, a bump at the interval 0.2� t
�0.4.

Figure 4 shows, at the same compositions, results for D
particles. Remarkable differences with the mean-squared dis-
placements of A particles are observed. Differently from A
particles �and from the standard behavior in the proximity of
liquid-glass transitions� D particles reach the diffusive re-
gime 
t for displacements much larger than their size: from
���rD�2��10�DD

2 at high T to ���rD�2��100�DD
2 at low T.

This result is observed for all the compositions. As in the
case of the A particles, for xsmall�0.6 an unusual approxi-
mate sublinear regime is observed at intermediate times, with
an exponent decreasing by decreasing temperature. This sub-
linear regime sets on for ���rD�2���DD

2 .
The results reported in this subsection evidence the exis-

tence of unusual relaxation features in the slow dynamics of
mixtures of large and small particles with sufficiently large
size disparity. Next we evaluate the effects of size disparity
in partial density-density correlators.

C. Density-density correlators

We compute partial density-density correlators F���q , t�
= �
��q , t�
��−q ,0�� / �
��q ,0�
��−q ,0��. Figure 5 shows the
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FIG. 2. �Color online� For the investigated compositions, the
temperature dependence of the diffusivities for the different species
of the mixture. For low temperatures at xsmall=0.1, data for the large
particles are absent, since they do not reach the diffusive regime in
the time window of the simulation �see text and Fig. 3�a��.

ANGEL J. MORENO AND JUAN COLMENERO PHYSICAL REVIEW E 74, 021409 �2006�

021409-4



T dependence of FAA�q , t� at specific values of the wave
vector q and different compositions. For the case xsmall=0.1
�Fig. 5�a��, A-A correlations display the standard behavior
observed for liquid-glass transitions �1–5�. After the initial
transient regime, FAA�q , t� shows a first decay to a plateau.
By decreasing the temperature, the plateau extends over
longer time intervals. At long times, a second decay occurs
from the plateau to zero. This second decay corresponds to
the � process of the glass transition and is usually well de-
scribed by a stretched exponential function.

Figures 5�b� and 5�c� show results for the case xsmall
=0.8, for wavelengths �2� /q� of, respectively, 2.2�DD and
1.1�DD. While apparently standard behavior is obtained in
the former case, unusual features are observed for wave-
lengths probing the size of the small particles �Fig. 5�c��.
First, FAA�q , t� does not exhibit a defined plateau. Moreover,
the shape of the long-time decay shows a concave-to-convex
crossover by decreasing temperature. At an intermediate
temperature T=0.50 the decay is logarithmic over two time
decades. As in the case of the mean-squared displacement, a
bump is observed at the interval 0.2� t�0.4.

Unusual relaxation features are also displayed by
FDD�q , t�. Figure 6 shows results for different compositions
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at wavelengths probing the size of the large particles. No
defined plateaus are observed for xsmall=0.1 and 0.6. Loga-
rithmic relaxation is observed at intermediate temperatures
for time intervals extending up to three decades. Data for
xsmall=0.6 exhibit a concave-to-convex crossover. Due to the
mentioned partial crystallization of large particles for xsmall
=0.1 �30�, data are absent in Fig. 6�a� for the range 0.50
�T�1.0. Apparently, a concave-to-convex crossover is also
present for this composition, though data are not conclusive.

The results for FDD�q , t� at xsmall=0.8 display a qualita-
tively different behavior. At the lowest investigated tempera-

ture T=0.30 a bump is observed at the interval 3� t�6,
followed by a decay until t�60, where logarithmic relax-
ation sets on and extends over three time decades.

IV. MCT ANALYSIS

A. Large particles

Many of the anomalous relaxation features reported in
Sec. III—sublinear behavior for mean-squared displacements
and logarithmic decay and concave-to-convex crossover for
density-density correlators—strongly resemble those re-
ported for hard-sphere colloids with short-ranged attractions
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FIG. 5. �Color online� Symbols: T dependence of FAA�q , t�, at
specific q values, for several compositions. The straight line in
panel �c� indicates logarithmic decay.
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FIG. 6. �Color online� As in Fig. 5 for FDD�q , t�.
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�6,7� and for the fast component in polymer blends with
components of very different mobilities �8,22�. As mentioned
in the Introduction, these anomalous features have been
strictly derived in the framework of the MCT for simple
models of short-ranged attractive colloids �9�. According to
MCT, this anomalous relaxation scenario arises from an un-
derlying higher-order transition. Motivated by this fact, we
discuss the present results by using MCT in an operational
way.

In its ideal version, which neglects activated hopping
events, MCT predicts a sharp transition from an ergodic liq-
uid to a nonergodic arrested state at a given value xc of the
relevant control parameter x �in practice density or tempera-
ture� �1,2,10�. When crossing the transition point x=xc from
the ergodic to the arrested state, the long-time limit of the
density-density correlator for wave vector q, F�q , t�, jumps
from zero to a nonzero value, denoted as the critical noner-
godicity parameter fq

c. Moving beyond the transition point
into the nonergodic state yields a progressive increase of the
nonergodicity parameter, fq� fq

c. In the MCT formalism, the
standard liquid-glass transition is of the fold type, also de-
noted as A2 �1,2,10,32�. In the standard case the jump in
F�q , t� is discontinuous; i.e., the critical nonergodicity pa-
rameter fq

c takes a finite value. MCT transitions with fq
c �0

are also denoted as type-B transitions. For ergodic states
close to the transition point, the initial part of the �
process—i.e., the von Schweidler regime—is approximated
by a power law expansion�1,2,10�

F�q,t� � fq
c − hq�t/��b + hq

�2��t/��2b, �3�

with 0�b�1. The prefactors hq and hq
�2� only depend on the

wave vector q. The characteristic time � only depends on the
separation parameter �x−xc� and is divergent at the transition
point. Another important prediction of the MCT for state
points close to fold transitions is the so-called second univer-
sality or x-time superposition principle �with x the corre-
sponding control parameter�. According to this prediction,
the final decay of F�q , t� �i.e., the final part of the � process�
is invariant under scaling by the �-relaxation time ��. Hence,
for two state points x=x1 and x=x2 close to the transition
point the final decay of F�q , t� fulfills the relation �1,2,10�

Fx=x1
�q,

t

���x1�
� = Fx=x2

�q,
t

���x2�
� . �4�

The �-relaxation time �� is a time scale probing the � pro-
cess. In practice, it can be obtained from fitting the decay
from the plateau to a stretched exponential Aqexp�−�t /�����,
with Aq the plateau height and 0���1. It can also be de-
fined as the time where F�q , t� decays to some small value—
e.g., 0.3 ��0.3�—provided it is well below the plateau.

Another prediction of the MCT for points close to an A2
transition is the power-law decrease of the diffusivity to zero,
D
 �x−xc��. The exponent � is given by �1,2,10�

� =
1

2a
+

1

2b
, �5�

with 0�a�0.4. Hence ��1.75. The critical exponents a, b,
and � are related to the so-called exponent parameter 1 /2
���1 through the relation

� =
�2�1 + b�
��1 + 2b�

=
�2�1 − a�
��1 − 2a�

, �6�

with � the gamma function �1,2,10�.
By numerically solving the MCT equations for dynamic

correlators, transition points are determined as those where
the respective long-time limit exhibits a jump from a zero to
a nonzero value. From the knowledge of the total and partial
static correlations at the transition point, all the critical ex-
ponents and the coefficients in Eqs. �3�, �5�, and �6� are
univoquely determined �1,2,10�. Solving the MCT equations
is a difficult task, which in general is only possible for rather
simplified models of real systems. Hence, instead of solving
the equations, critical exponents and prefactors are often ob-
tained as fit parameters from simulations or experimental
data. Consistency of the data analysis requires that the so-
obtained critical exponents fulfill Eqs. �5� and �6�.

Figure 7 shows an analysis of data for A particles at com-
position xsmall=0.6 in the framework of the MCT for A2 tran-
sitions. Figure 7�a� shows a fit of the diffusivity to a power
law DA
 �T−Tc��. The fit provides the values Tc=0.180 and
�=3.80. From Eqs. �5� and �6� we obtain �=0.887, a
=0.220, and b=0.326. Figure 7�b� shows, for FAA�q , t� at a
low T, fits of the decay from the plateau to Eq. �3�. By
forcing the von Schweidler exponent to the mentioned value
b=0.326 a consistent description is achieved. Figure 7�c�
shows a successful test of the second universality �time-
temperature superposition principle�, by using �0.3 for the
�-relaxation time. For the composition xsmall=0.3 similar re-
sults are obtained �not shown�. From an analogous analysis
we obtainTc=0.344, �=0.880, �=3.68, a=0.226, and b
=0.340 for this latter composition.

For the composition xsmall=0.1, a test of MCT for A par-
ticles is not possible due to the absence of data in the range
0.50�T�1.0. Though a two-step decay is observed for T
�0.50 �see Fig. 5�a��, a fit to Eq. �3� is not possible in that
temperature range, since the plateau height is not constant,
but clearly increases by decreasing temperature. According
to predictions of ideal MCT, these temperatures would cor-
respond to nonergodic states below the transition point
�T�Tc�. Within this interpretation, the fact that a decay from
the plateau occurs at long times would be a signature of the
so-called hopping events, which restore ergodicity.

For the composition xsmall=0.8, data of FAA�q , t� for wave-
lengths 2� /q probing the size of the small particles do not
show a defined plateau �Fig. 5�c��, and a fit to Eq. �3� is not
possible. Moreover, the observed logarithmic decay and
concave-to-convex crossover do not fit to expectations for A2
transitions. They instead resemble the features reported for
short-ranged attractive colloids �6,7� and polymer blends �8�,
which for the former case have been derived in the frame-
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work of MCT for state points close to higher-order transi-
tions.

A higher-order MCT transition An+1 is characterized by an
exponent parameter �=1 and can emerge as the result from
the interplay between n control parameters 	xn

= �x1 ,x2 , . . . ,xn�. Higher-order MCT transitions were initially

derived for schematic models �33,34�, but only recently have
been obtained for short-ranged attractive colloids �9,11–14�
as a first realization in real systems. It can be demonstrated
that an expansion in a power-law series as Eq. �3� is not
convergent for �=1 or for values of � very close to unity. On
the contrary, a logarithmic expansion is rapidly convergent.
Hence, close to a higher-order MCT transition, or more gen-
erally to an A2 transition with ��1, F�q , t� is approximated
at intermediate times as �9,33–35�

F�q,t� � fq
c − Hqln�t/�� + Hq

�2�ln2�t/�� , �7�

where the prefactors Hq and Hq
�2� depend on q and on the

distance of the state point 	xn
 to the transition point 	xc
n
.

These prefactors exhibit two important properties �9�: �i� Hq

factorizes as Hq=C�	xn
�H̃q where H̃q only depends on q and
the q-independent term C�	xn
� depends on the state point.
Hence, values of Hq for different state points close to the
transition point must be proportional. �ii� Hq

�2� does not fol-
low scaling behavior. It is decomposed as �9�

Hq
�2� = A�	xn
� + B�	xn
�Kq, �8�

where Kq only depends on q and the q-independent terms

A�	xn
� and B�	xn
� depend on the state point. The terms H̃q

and Kq are univoquely determined by static structure factors
at the higher-order transition point. As in the case of A2
transitions, the coefficients in Eq. �7� are often obtained as fit
parameters from simulations or experimental data.

Decomposition of Hq
�2� according to Eq. �8� has an impor-

tant consequence. There are hypersurfaces in the control pa-
rameter space, 	xn
 � 	xn
�q�, where Hq

�2� changes its sign,
being zero along the hypersurface. This property leads, for a
given value of q, to a concave-to-convex crossover in F�q , t�
when crossing the hypersurface by varying control param-
eters �as temperature or density� �9�. Analogously, for a
given state point, varying the value of q also leads to a
concave-to-convex crossover in F�q , t�. Since Hq

�2�=0 for
state points at the hypersurface, according to Eq. �7�, F�q , t�
will exhibit a logarithmic decay for such state points. Mov-
ing between different state points changes the value of q for
which pure logarithmic decay occurs. The concave-to-
convex crossover is one of the main signatures of the higher-
order MCT scenario and differentiates it from other theoret-
ical frameworks �9�.

As shown in Figs. 5�c� and 8�a�, a concave-to-convex
crossover is present, by both varying the temperature and
wave vector, for FAA�q , t� at composition xsmall=0.8. Figure
8�a� shows fits to Eq. �7� for T=0.50 �36�. Figures 8�b� and
8�c� show, respectively, the obtained values for fq

c and Hq, for
temperatures T=0.40 and T=0.50. The fact that a common fq

c

is found for both states, together with the observed scaling
behavior of Hq, would be consistent with the existence of a
nearby MCT higher-order transition ��=1� or an A2 transi-
tion with ��1. Differently from the usual behavior for
liquid-glass transitions, fq

c shows no strong modulation but a
nearly monotonous decay. Though this result qualitatively
resembles the observed q dependence at A3 and A4 transi-
tions for models of short-ranged attractive colloids

0.1 110
-6

10
-5

10
-4

10
-3

10
-2

T-T
c

D
A

x
small

 = 0.6

T
c
 = 0.18     γ = 3.8

(a)

10
-1

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

q = 1.38
q = 2.09
q = 2.45
q = 2.66
q = 2.93
q = 3.22
q = 4.01
q = 4.46
q = 5.20
q = 6.27
q = 7.14

t

F A
A

 (q
,t)

x
small

 = 0.6    T = 0.3

(b)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

T = 0.30
T = 0.40
T = 0.50
T = 0.75
T = 1.0

F A
A

(q
,t)

t/τ0.3

x
small

 = 0.6

2π/q = 2.1σ
DD

(c)

FIG. 7. �Color online� MCT analysis of data for A particles, for
composition xsmall=0.6. Panel �a�: T dependence of the diffusivity.
Symbols are simulation data. The line is a fit to a MCT power law
DA
 �T−Tc�� �see text�. Panel �b�: �symbols� q dependence of
FAA�q , t� at a low temperature. Curves are fits to Eq. �3�. Panel �c�:
T dependence of FAA�q , t� for a specific q value. In order to test the
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�6,9,13,14,37�, such a comparison can be misleading. The
observed q dependence is not necessarily related to a hypo-
thetical higher-order MCT transition. It is indeed also found
at moderate size disparity, for which standard relaxation fea-
tures are observed �23,25�.

It is also noteworthy that the observed sublinear behavior
in the mean-squared displacement at intermediate times is
another feature characteristic of the higher-order MCT sce-
nario. In leading-order �9�, the mean-squared displacement is

given by ���r�t��2�=rc
2�t /��z, with rc the localization length

and z=hMSDC�	xn
� /rc
2. The coefficient hMSD is determined

by static structure factors at the transition point. Since the
prefactor C�	xn
� decreases as the transition point is ap-
proached, the exponent z also decreases, as observed in Fig.
3�c�. Deviations from pure power-law behavior result from
corrections to the leading term. Such corrections are minimal
for certain values of the control parameters, yielding pure
power-law behavior �9�.

B. Small particles

Data for D particles cannot be reproduced by the standard
A2 scenario for any of the investigated compositions, due to
the absence of defined plateaus and to the presence of loga-
rithmic relaxation in density-density correlators. Data for
xsmall=0.6 exhibit features resembling predictions of the
higher-order MCT scenario. Figure 9 shows results from
such an analysis, analogous to that in Fig. 8 for A particles,
in terms of the latter framework. The concave-to-convex
crossover in FDD�q , t�, obtained by decreasing temperature at
constant q �Fig. 6�b��, is also observed by varying q at con-
stant temperature �Fig. 9�a��. A good description of the decay
is achieved by Eq. �7�. Consistently, fits for different state
points provide the same values for fq

c �Fig. 9�b�� and scaling
behavior is obtained for the corresponding values of Hq �Fig.
9�c��. The observed sublinear behavior for the mean-squared
displacement and the decrease of the exponent by decreasing
temperature �Fig. 4�b�� are other features shared with the
higher-order MCT scenario.

We have performed an analogous analysis for FDD�q , t� at
composition xsmall=0.1 �see Fig. 10�, despite there being
some differences with features characteristic of the higher-
order MCT scenario. Differently from the case xsmall=0.6, no
apparent sublinear behavior is present in the mean-squared
displacement �Fig. 4�a��. Due to the absence of data in the
range 0.5�T�1.0, it is difficult to unambiguously identify a
concave-to-convex crossover in FDD�q , t� by varying tem-
perature �Fig. 6�a��. Figure 10�a� shows results by varying q
at constant T=0.30. The trend exhibited by the data, which
show a extremely stretched decay at large wave vectors, sug-
gests that such a crossover might be present for higher values
of q. However, we cannot confirm this point, which remains
to be understood. We have not detected the crossover at least
up to q�7�DD

−1 . Beyond that q value the amplitude of the
decay is rather small and it is difficult to solve the shape of
the curve within statistical noise.

Still, Eq. �7� provides a good description of the decay
�Fig. 10�a��, with a common fq

c for different state points �Fig.
10�b�� and Hq obeying scaling behavior �Fig. 10�c��. Surpris-
ingly, the scaling factor is unity within error bars, despite the
dynamics at state points T=0.30 and T=0.40 being signifi-
cantly different �see Figs. 4�a� and 6�a��.

Due to the complex form of the decay of FDD�q , t� for
composition xsmall=0.8 �Fig. 6�c��, a fit to Eq. �3� or �7� is not
possible. Hence, at this composition there are no apparent
analogies for small particles with known MCT scenarios.

V. DISCUSSION

Results presented in Secs. III and IV exhibit strong dy-
namic analogies with MCT predictions for state points close
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to higher-order transitions ��=1� or, more generally, for A2

transitions with exponent parameter ��1. These analogies
must not be understood as a proof of an underlying MCT
scenario for the mixture of large and small particles here
investigated. An unambiguous answer to this question could
only be provided by solving the corresponding MCT equa-
tions. As mentioned in the Introduction, theoretical and com-
putational works on the framework of the MCT on mixtures
of large and small hard spheres have not reported anomalous
relaxation features �23–25�. However, these works have ex-

plored size disparities smaller than the value �=�AA /�CC
=�BB /�DD=2.5 used in this work.

Figure 11 displays typical slabs of the simulation box for
mixture compositions xsmall=0.1, 0.6, and 0.8. The slab
thickness is 5�DD. On the basis of the particular features
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displayed by the configuration of small and large particles at
the different compositions, next we discuss the observed
anomalous relaxation features in terms of competition be-
tween different arrest mechanisms.

A. Symmetric mixtures

For composition xsmall=0.6, large particles are distributed
over the simulation box in a rather homogeneous way, with a

weak tendency to form clusters. Small particles fill con-
nected cavities in the slow matrix of large particles, which
acts as a confining medium for the formers. As a conse-
quence, competition between bulklike dynamics and confine-
ment occurs for arrest of the small particles. Pure logarithmic
decay in FDD�q , t� is observed for q�2.5�DD

−1 �Fig. 9�a��—
i.e., for wavelengths �2.5�DD probing the cavity size �Fig.
11, middle�.

Dynamic arrest of large particles is essentially driven by
soft-sphere repulsion, as it would be for a system without
size disparity, and a consistent description of dynamic fea-
tures is achieved within the standard A2 scenario of the MCT.
Still, it must be mentioned that the obtained value of the
exponent parameter, �=0.887, is significantly higher than
typical values ��0.7 usually obtained within the A2 scenario
�2–5�. This high value of � can be interpreted as a signature
of the depletion mechanism induced by neighboring small
particles, which leads to the observed weak clusterization of
large particles. Though only weakly competing with soft-
sphere repulsion, the depletion mechanism yields precursor
effects of an incoming higher-order scenario ��→1�, as
strong stretching for the long-time decay in FAA�q , t� �Fig.
7�b��, or sublinear behavior in the mean-squared displace-
ment �Fig. 3�b��. These effects are weaker for the composi-
tion xsmall=0.3, yielding a lower exponent parameter �
=0.880.

B. High concentration of small particles

For composition xsmall=0.8, the population of small par-
ticles is sufficient to provide an efficient depletion mecha-
nism, yielding a strong clusterization of the large particles
�Fig. 11, bottom�. Competition between soft-sphere repulsion
and depletion leads to anomalous relaxation features for the
large particles. Hence, FAA�q , t� shows logarithmic decay for
q�5.6�DD

−1 �Fig. 8�a��—i.e., for wavelengths ��DD probing
the size of the small particles.

Though depletion effects are evidenced by clusterization
of large particles, it is worth emphasizing that a direct com-
parison with results for the effective one-component systems
displaying the higher-order MCT scenario �6,7,9,11–14� can-
not be made. In the effective one-component systems the
small particles are absent and the depletion mechanism is
described by an effective short-ranged attraction between the
large particles �19�. However, concerning dynamics, the va-
lidity of this approximation does not only require a much
smaller size, but also a much smaller mass for the small
particles �38�. In the case here investigated large and small
particles have the same mass. Therefore, a proper proof of
the existence of an underlying higher-order MCT scenario
can only be provided by solving the MCT equations for the
two-component system.

Density-density correlators for small particles at xsmall
=0.8 exhibit a complex decay. An apparent logarithmic de-
cay occurs at long times �Fig. 6�c��. For T=0.30 the onset of
this decay occurs at t�60, which corresponds to mean dis-
placements ���rD�2�1/2�2�DD �Fig. 4�c��. If logarithmic de-
cay is again interpreted as the result of a competition be-
tween bulklike dynamics and confinement, the former

FIG. 11. �Color online� Typical slabs �of thickness 5�DD� of
different configurations at T=0.30. From top to down xsmall=0.1,
0.6, and 0.8. Dark: A and B particles. Light: C and D particles.
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distance would correspond to the length scale beyond which
confinement induced by the large particles affects dynamic
arrest of the small particles. For smaller length scales, the
only relevant arrest mechanism is bulklike caging induced by
neighboring small particles. Hence, for t�60 small particles
do not exhibit clear signatures of anomalous relaxation, as
suggested by Figs. 4�c� and 6�c�.

C. Low concentration of small particles

For xsmall=0.1, most of the small particles are isolated in
the slow matrix of large particles �Fig. 11, top�. However,
there is also a significant population of pairs of neighboring
small particles. We have estimated that about a 7% of the
small particles have a neighboring small particle within a
distance 1.3�DD. Clusters of three or more neighboring small
particles for this interparticle distance are very rare.

The existence of pairs of neighboring small particles
yields a sharp peak at distances �DD�r�2.5�DD for the
radial distribution function for D-C �gDC�r�� and D-D
�gDD�r�� pairs, as shown in Fig. 12. Hence, even for so low
populations of small particles, it may be expected that com-
petition between bulklike dynamics and confinement occurs
for a significant fraction of particles. In order to test this
hypothesis we have calculated mean-squared displacements
and density-density correlators for the subset of D particles
which initially �i.e., at the time origin for the calculation of
both quantities� have at least one neighboring small �C or D�
particle within a distance r�1.3�DD. This distance approxi-
mately corresponds to the location of the maximum in gDC�r�
and gDD�r�. Figure 13 shows ���rD�2� and FDD�q , t�, com-
puted for the former subset of D particles and compared with
the corresponding quantities computed for all the D particles
�previously shown in Figs. 4�a� and 10�a��. Relaxation of D
particles having neighboring small particles is, at intermedi-
ate times, faster than the average over all D particles, which
is approached only for very long times corresponding to the
onset of the linear diffusive regime.

Differently from the average over all D particles, the sub-
set initially having neighboring small particles does exhibit
anomalous relaxation features. Mean-squared displacements
display sublinear behavior over two time decades. The cor-

responding exponent decreases with decreasing temperature
�Fig. 13�a��. Density-density correlators show a concave-to-
convex crossover �Fig. 13�b��. Logarithmic relaxation is ob-
served for wave vectors q�2.5�DD

−1 �Fig. 13�a��—i.e., for
length scales �2.5�DD which probe the first minimum in
gDC�r� and gDD�r�.

We have also computed ���rD�2� and FDD�q , t� for the
subset of D particles which initially do not have any neigh-
boring small particle within a distance r�4.5�DD—i.e., for
initially isolated D particles. The results for this subset �not
shown� are hardly distinguishable from those averaged over
all D particles and reported in Figs. 4�a� and 10�a�. Hence,
initially isolated D particles do not show anomalous relax-
ation features as sublinear behavior for mean-squared dis-
placements or concave-to-convex and logarithmic decay for
density-density correlators.
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FIG. 12. �Color online� Radial distribution function for D-C and
D-D pairs, for xsmall=0.1 and T=0.50.

10
0

10
1

10
2

10
3

10
410

-1

10
0

10
1

10
2

T = 0.30
T = 0.40

~ t
0.54

~ t
0.41

~ t

t

〈(
∆r

D
 )

2 〉

x
small

 = 0.1

(a)

10
-1

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1 q = 0.92
q = 1.50
q = 2.00
q = 2.56
q = 2.82
q = 3.23
q = 3.68
q = 4.41
q = 5.02

F D
D

 (q
,t)

t

x
small

 = 0.1        T = 0.3

(b)

FIG. 13. �Color online� Symbols: for composition xsmall=0.1,
mean-squared displacement �panel �a�� and density-density cor-
relator �panel �b�� for the subset of D particles which initially have
at least one neighboring small particle within a distance r
�1.3�DD. Panel �a� shows data for T=0.30 and 0.40. Dashed
curves are the corresponding data by averaging over all the D par-
ticles. Solid lines indicate linear or sublinear behavior. Panel �b�
shows data for different q values at T=0.30. Dashed curves are data
by averaging over all the D particles �from top to down, q�DD

=0.92, 2.00, 3.23, and 5.02�. The solid line indicates logarithmic
relaxation.
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VI. CONCLUSIONS

We have carried out simulations on a mixture of large and
small particles. The slow dynamics have been investigated
for a broad range of temperature and mixture composition.
The introduction of a significant size disparity yields very
different time scales for large and small particles, reaching
differences of from two to three decades in diffusivity for the
lowest investigated temperatures. This model exhibits non-
conventional relaxation features. Mean-squared displace-
ments display sublinear behavior at intermediate times. The
exponent for the corresponding power law decreases by de-
creasing the temperature. By varying the temperature or
wave vector, a concave-to-convex crossover is obtained for
the shape of the decay of density-density correlators. At
some intermediate point of this crossover, the decay is purely
logarithmic.

These anomalous relaxation features, which are observed
over time intervals extending up to four decades, strongly
resemble predictions of the mode coupling theory for state
points close to higher-order transitions, which originate from
the competition between different mechanisms for dynamic
arrest. By varying the mixture composition, anomalous re-
laxation is displayed by both the large and small particles.
For the large particles we suggest competition between soft-
sphere repulsion and depletion effects induced by neighbor-
ing small particles. For the small particles we suggest com-
petition between bulklike dynamics and confinement,

respectively, induced by neighboring small particles and by
the slow matrix of large particles.

Simulation results reported here do not constitute a rigor-
ous proof of an inherent MCT scenario as the one described
above. A proper answer to this question can only be provided
by solving the corresponding MCT equations. However, the
highly nontrivial observed analogies suggest one to consider
it as a plausible hypothesis. This view is also supported by
MCT theoretical calculations in a mixture of fixed and mo-
bile hard spheres �26,27�, which explicitly report a higher-
order MCT transition �39�.

Though being beyond the scope of this article, the obser-
vation of confinement effects also suggests to test a more
speculative hypothesis: a MCT scenario for a liquid of
spheres in fractal dimensions as the origin of the observed
relaxation features for the small particles. To our knowledge
no MCT calculations of mean-squared displacements or dy-
namic correlators are available for the latter or similar sys-
tems.
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